Small Scale LNG
Emerging Technologies for Small-Scale Grids

Tony Regan
DataFusion Associates

SIEW Thinktank Roundtable, Singapore
27 October 2017
DataFusion Associates

DataFusion is a Singapore based energy consulting business focused on oil & gas, energy and utilities in Asia. We offer a wide range of services:

- Strategic consulting
- Business and Project Development (feasibility studies, business case)
- Project Management
- Asset development & enhancement
- Due diligence
- Financial advisory services
- Organizational Development

Whilst focused on Asia and based in Singapore, we have a presence in the cities of Beijing, Melbourne, and London.

To provide the widest range of commercial, technical and financial advisory services to our clients we work in association with:

Incitias, an engineering design consultancy based in Melbourne, providing multi-discipline technical support for the oil & gas, LNG, marine and defense sectors worldwide and core engineering design services focused around process, facilities, utilities and structures with specialist services for due diligence and peer review, feasibility study, option appraisal, conceptual design and project management. www.incitias.com

Timera Energy a UK based energy consultancy providing senior consulting expertise on value and risk in European energy markets and the global LNG market. Experts in the analysis of flexible energy assets, contracts and portfolios and the markets in which they operate. www.timera-energy.com

Contact: Tony Regan Tel 65 6254 4791, Mobile 65 9862 0965 tony.regan@datafusion.com.sg
The traditional LNG business model

- **Integrated model**
 - Production/transportation and storage
 - Long term offtake agreements

- **New model emerging**
 - Integration within a country
 - Local production
 - More suppliers
 - Transportation by ship, truck, train
 - Delivery to a single end user
 - Many more buyers
 - Simpler lower cost infrastructure
 - Still underpinned by long term offtake agreement
LNG Trade Flow

Emerging Market

Base Load
Power

- LNG Production
 - Small Scale (<1 mtpa)
 - [100+ Plants]
 - Large Scale (2-8 mtpa)
 - [34 Plants]

Vessels
- [478 LNG Carriers]
- Trains

Floating Terminal
- [25 Terminals]

Onshore Terminal
- [101 Terminals]

Emerging Market
- Transport
 - Ships
 - Trucks

Domestic

Industry

DataFusion Associates
Example of small/medium scale LNG market

- Large scale LNG – Snohvit 4.1 million tonnes/annum
- Small Scale LNG- 23,000 tpa at Tjeldbergodden, Norway (2002) + 3 more
 - 28 small LNG terminals
 - Small scale storage
 - Feeder vessels – 7,500 – 20,000 cu.m
 - Small LNG carriers – 1,100 – 10,000 cu.m
 - Trucks 20-40 tonnes
 - Rail tank cars – 60-100 tonnes
 - Pipelines
 - 7 LNG bunker terminals

- Customers
 - Industry
 - Power
 - Trucking companies
 - Ferries
 - Offshore service vessels/Coastguard

China market developing along these lines, Indonesia could be next
What do we mean by small scale?

- Conventional LNG – 3-7 million tonnes per annum trains
- Mini size 20 – 100 tonnes/day
- Small size 100-500 tonnes/day
- Mid size 500 – 3000 tonnes/day

32 million tonnes per annum

10 tonnes per day
What do we mean by small scale?

Large bullets 760 cu.m

Singapore LNG terminal – 11 mtpa

Nynashamn LNG terminal 0.25 mtpa
What do we mean by small scale

Conventional LNG carrier – circa 145,000 m3
- Q Flex 220,000 m3
- Q Max 244,000 m3

Small LNG carriers
- Coral Methane 7,500 m3
- Coral Energy 15,600 m3
What do we mean by small scale

Trucks
Trains
Ships
Iso tanks
China

- 20 LNG receiving terminals
- 4 small scale LNG terminals
- 100+ small scale liquefaction plants
- 5 million NGV’s
- 250,000 LNG fuelled trucks
- 3,300 LNG service stations
- 10,000 LNG trucks
- 106 inland river LNG fuelled vessels

<table>
<thead>
<tr>
<th>Regasification</th>
<th>Existing</th>
<th>Firm</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dapeng, 6.7 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Caofedian Tangshan, 3.5 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Tianjin, 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Tianjin, 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Nangang</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Qingdao, 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Lianyungang, 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Yancheng, 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Rudong, Jiangsu, 3.5 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Wuhaogou, 1 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Shanghai, 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Zhoushan, 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Qinhuangdao, 2 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Fengcheng, 0.6 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Hainan, 2 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Beihai (Guangxi), 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Hainan, 2 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Haikou, 0.6 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Haikou, 0.6 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Guangzhou, 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Zhangzhou, 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Yangiang</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Yingkou LNG</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Dalian, 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Yantai</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Zhoushan, 3 mtpa</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Yantai</td>
<td>▲</td>
<td>❌</td>
<td>❌</td>
</tr>
</tbody>
</table>
SE Asia LNG Infrastructure

- LNG terminals
 - Indonesia
 - Arun
 - Bali
 - Lampung
 - West Java
 - Malaysia
 - Malacca
 - Singapore
 - Thailand
 - Map Ta Phut
 - Malaysia
 - Bontang
 - Tangguh
 - Donggi Senoro
 - Sulawesi
 - PNG LNG
 - Singapore
 - Map Ta Phut
 - Thailand
 - Map Ta Phut

- Liquefaction plants
 - Brunei LNG
 - Malaysia
 - Bintang
 - FLNG Satu
 - Indonesia
 - Bontang
 - Tangguh
 - Donggi Senoro
 - Sulawesi
 - PNG LNG

Substantial large scale infrastructure to support emerging small scale – many supply hubs.
Indonesia

Note the small volumes in the blue boxes

West Java FSRU 400 mmstdc/d
Kupang 5 mmstdc/d

Source: SKK MIGAS
25 floating terminals in operation
FSRU storage capacity ranges from 125,000 to 263,000 cu.m. but most about 170,000 cu.m.

These too big to support many of the emerging gas to power opportunities
First small scale floating terminal

Ball 26K LNG FSU

“Floating Storage Unit for Bali Benoa Port to supply LNG to FRU”

- Client: JSK Shipping (Indonesia)
- Shipyard: (TBD)
- Classification: KR
- Scope of Work:
 - FEED & PMC
 - Shipbuilding Engineering & Design
 - Cargo Handling Equipment Supply
- Dimension of Vessel/ Barge
 - LOA : 119.1 m/ Breadth: 27.1 m/ Depth: 16.4 m
- Characteristics of LNG Storage Tank
 - Q’by x Capacity: 2 x 13,000m³
 - CCS: MK-III Membrane type
- Cargo Handling Equipment
 - Main CP: 4sets (2sets/ tank), 200 m³/hr, 155 mlc
 - Stripping/Spay pump: 2sets (1set/ tank), 50 m³/hr, 155 mlc
 - Return gas compressor: 2 x 2,000 m³/hr
- Nitrogen Generator Plant
 - Capacity PSA plant: 2 x 40 m³/hr at 97 vol %

Source Gas Entec

Ball 50mmscfd LNG FRU

“The World’s First Floating Regasification Unit for Bali Benoa Port to supply LNG to Power Plant”

- Client: JSK Shipping (Indonesia)
- Shipyard: KangNam Corporation
- Classification: KR
- Scope of Work: EPC Contractor
- Dimension of Vessel/ Barge
 - LOA : 46.0 m / Breadth: 12.0 m / Depth: 4.7/ 5.2 m
- Characteristics of LNG Buffer Tank
 - Q’by x Capacity: 1 x 400 m³
 - LNG feed pump: 2 x 100m³/h x 260 mlc, Electric motor driven, Barrel Type
- Regasification System
 - LNG flow to skid: 50 mmscfd
 - Inlet/ Outlet temp. : appr. -158 °C/ min. 5 °C
 - NG outlet pressure: 900 kPa.g

K.R. : Korea Register

DataFusion Associates
Small scale LNG value chain

More complex than large scale value chain – more options
Small scale can be relatively expensive

Small is relatively expensive:
Conventional 170,000 m³ LNG carrier – approx US$210 million
Mid scale 30,000 m³ LNG carrier (Type C) – approx US$105 million
Small scale 12,000 m³ LNG carrier (Type C) – approx us$50 million
How do costs compare with conventional LNG

Higher unit costs than for large scale LNG

• Costs more to transport a cubic metre of gas in a small carrier compared with a large carrier

• Costs much more to store a cubic metre of LNG in a small bullet than a full size terminal tank

BUT

• Small or midscale does not need to be more expensive if concept is properly chosen around cost optimisation, considering logistics, technologies and if possible existing available infrastructure or natural shelter.
Small and mid scale v conventional

Small or midscale does not need to be more expensive if concept is properly chosen around cost optimisation, considering logistics, technologies and if possible existing available infrastructure or natural shelter.

- **Medium Size 1-2MTPA**
 - End-User: 10.5-12
 - Small Scale 0.3-0.8MTPA
 - Small Scale Spoke and Hub 0.1-1MTPA

- **Conventional >2.5MTPA**
 - End-user: $8.0-$10
 - Medium Size 1-2MTPA
 - Small Scale 0.3-0.8MTPA
 - Small Scale Spoke and Hub 0.1-1MTPA

- **Optimised facility, minimising storage, maximising logistic chain, utilising existing infrastructure, choice between: regas onshore with storage onshore or FSU, FSRU (regas barge) or FSU and regas offshore.**
Optimization

Optimization of logistic chain cost can bring advantage in the order of 50cent/MMBtu:

- Storage minimization
- Selection of propulsion
- Maximization of LNGC utilization
- Multi Modal Distribution Concept can further improve Cost where ultra small consumers are part of the distribution (<10mmSCFD/day)
- Utilization of existing infrastructure key to cost reduction
SNG™ Barge with 3X 2270m³ (100%) Storage Regas Capacity Modular: From 3-30mmSCFD Gas Engine for Power Generation on Board 8-52barg.

Draught < 4m, LOA = 100m, B = 33m, Loading rate 800m³/hour. IMO-IGC, SIGGTO, ISGOTT, ISO and ASME Standard compliant.

Source: INCITIAS
SNG Barge™ 30-110mmSCFD for use with FSU
SNG™ Barge with 8X 2100m³

Draught<4m,
LOA=120m
B=36m,
Loading rate
1200m³/hour
IMO-IGC, SIGGTO,
ISGOTT, ISO and ASME
Standard compliant.

SNG™ Barge with 8X 2100m³ (100%) Storage Regas Capacity Modular: From 3-75mmSCFD Gas Engine for Power Generation on Board 8-52barg.

Source: INCITIAS
Shallow Water Multi Modal LNG distribution

- 3x 2270m³ LNG storage in C-type tank
- Transhipment on Barge to 20” and 40” ISO Container, to enable sub distribution
- Draught 3.4m
- L=95m
- B=30m
- Speed: 8kn-10kn
- Tug Push or Pull
- Can moor and offload to standard 6000DWT wharfs available in most south east Asian island ports
- Optional: Articulated Tug Barge solution.
Large Scale to Small Scale Regas Comparison

Assumption 20 year Design life, within Tropic of Capricorn

- **750mmSCFD Onshore Regas**
 - Jetty CAPEX 65-85 million
 - ~3 4.5cent/mmBTU

- **75mmSCFD Std. Small Scale Regas**
 - Jetty CAPEX 15 million
 - ~7cent/mmBTU @20 years

- **75mmSCFD Optimized Shallow Water Regas Barge**
 - Jetty CAPEX 9.5 million
 - ~5.5cent/mmBTU @20 years

- **Onshore Regas 750mmSCFD**
 - 90-150 million
 - 16-25cent/mmBTU

- **Onshore Storage 180K**
 - 160-220 million
 - 8-12cent/mmBTU

- **Onshore Power Generation 25 million**
 - 1.5-2.5 cent/mmBTU

- **Infrastructure (breakwater/access roads, dredging, etc)**
 - 50-200 million
 - 25-100cent/mmBTU

- **Regas Barge shallow water 75mmSCFD With 12k Storage**
 - 45million
 - 45cent/mmBTU @20 years (incl. fuel gas)

- **Land, Infrastructure, access roads, dredging, breakwater**
 - 5-50 million
 - 5-25 cent/mmBTU @20 years

Based on a real project in Indonesia (with execution currently on hold) with local infrastructure provider based on turnkey pricing, firm quotation and in-country barge construction to meet local content with design done by reputable engineering house and reputable cryogenic equipment vendor and construction supervision accuracy +/-20% as BOOT contact.
Last word

• We don’t yet have small or medium size FSRU’s but may not need them as alternative solutions may be more appropriate

• If one selects the right technology based on the site and local requirements and optimise around the logistic chain, minimise storage and avoid costly infrastructure developments (such as extensive capital dredging, construction of breakwaters) and by smart selection of site, technology and contracting strategy (say BOOT or EPCM, but also lease) then small scale LNG project economics are low enough to enable gas to be supplied to even the smallest power plants